วันพุธที่ 2 สิงหาคม พ.ศ. 2560
ฟังก์ชันเอกซ์โพเนนเชียล
ฟังก์ชันนั้นมีอยู่หลายรูปแบบ แต่ละแบบก็มีการตั้งชื่อไม่เหมือนกัน ฟังก์ชันเอกซ์โพเนนเชียลก็เป็นอีกรูปแบบหนึ่งของฟังก์ชันซึ่งเราจะไปดูว่าฟังก์ชันเอกซ์โพนเนนเชียลนั้นมีรูปแบบอย่างไร ก็ต้องไปดูนิยามของมันครับ ว่านิยามของฟังก์ชันเอกซ์โพเนนเชียลนั้นเป็นอย่างไร อ่านเพิ่มเติม
ฟังก์ชันกำลังสอง
1 กราฟของฟังก์ชันกำลังสอง
ฟังก์ชันกำลังสอง คือ ฟังก์ชันที่อยู่ในรูป เมื่อ a,b,c เป็นจำนวนจริงใดๆ และ ลักษณะของกราฟของฟังก์ชันนี้ขึ้นอยู่กับค่าของ a , b และ c และเมื่อค่าของ a เป็นบวกหรือลบ จะทำให้ได้กราฟเป็นเส้นโค้งหงายหรือคว่ำ
ดังรูป
จากรูปจะเห็นว่า ถ้า a > 0 กราฟเป็นเส้นโค้งหงายขึ้น อ่านเพ่มเติม
ฟังชันเชิงเส้น
1.2 ฟังก์ชันเชิงเส้น คือ ฟังก์ชันที่อยู่ในรูป y = ax+b เมื่อ a ,b เป็นจำนวนจริง และ กราฟของฟังก์ชันเชิงเส้นจะเป็นเส้นตรง
ตัวอย่างของฟังก์ชันเชิงเส้น ได้แก่ อ่านเพิมเติม
ความสัมพันธ์เเละฟังก์ชัน
คู่อันดับ (Order Pair) เป็นการจับคู่สิ่งของโดยถือลำดับเป็นสำคัญ เช่น คู่อันดับ a, b จะเขียนแทนด้วย (a, b) เรียก a ว่าเป็นสมาชิกตัวหน้า และเรียก b ว่าเป็นสมาชิกตัวหลัง
(การเท่ากับของคู่อันดับ) (a, b) = (c, d) ก็ต่อเมื่อ a = c และ b = d อ่านเพิ่มเติม
การนำสมบัติของจำนวนจริงไปใช้เเก้สมการกำลังสอง
ในการเขียนสัญลักษณ์แทนจำนวน นิยมใช้ตัวอักษรภาษาอังกฤษตัวเล็ก เช่น x, y แทนจำนวน และเรียกอักษรเหล่านั้นว่า ตัวแปร สำหรับตัวเลขที่แทนจำนวน เช่น 1,2,3 เรียกว่า ค่าคงตัว เรียกข้อความในรูปสัญลักษณ์ เช่น 2, 3x, 5+x, x-8 ว่า นิพจน์ เรียกนิพจน์ที่เขียนให้อยู่ในรูปการคูณของค่าคงตัว อ่านเพิ่มเติม
สมบัติของจำนวนจริงเกี่ยวกับการบวกเเละการคูณ
จำนวนตรรกยะ (rational number) เป็นจำนวนจริงที่สามารถเขียนได้ในรูปเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็นศูนย์ และเขียนในรูปทศนิยมซ้ำได้
จำนวนอตรรกยะ (irrational number) เป็นจำนวนจริงที่ไม่ใช่จำนวนตรรกยะซึ่งไม่สามารถเขียนในรูปทศนิยมซ้ำหรือเศษส่วนของจำนวนเต็มที่ตัวส่วนไม่เป็นศูนย์แต่เขียนได้ในรูปทศนิยมไม่ซ้ำ อ่านเพิ่มเติม
จำนวนจริง
เซตของจำนวนจริงประกอบด้วยสับเซตที่สำคัญ ได้แก่
- เซตของจำนวนนับ/ เซตของจำนวนเต็มบวก เขียนแทนด้วย I
I = {1,2,3…}
- เซตของจำนวนเต็มลบ เขียนแทนด้วย I
- เซตของจำนวนเต็ม เขียนแทนด้วย I
I = { …,-3,-2,-1,0,1,2,3…}
- เซตของจำนวนตรรกยะ : เซตของจำนวนจริงที่สามารถเขียนได้ในรูปเศษส่วน โดยที่ a,b เป็นจำนวนเต็ม และ b = 0 อ่านเพิ่มเติม
สมัครสมาชิก:
บทความ (Atom)